Kinetochore motility after severing between sister centromeres using laser microsurgery: evidence that kinetochore directional instability and position is regulated by tension.
نویسندگان
چکیده
During mitosis in vertebrate somatic cells, the single attached kinetochore on a mono-oriented chromosome exhibits directional instability: abruptly and independently switching between constant velocity poleward and away from the pole motility states. When the non-attached sister becomes attached to the spindle (chromosome bi-orientation), the motility of the sister kinetochores becomes highly coordinated, one moving poleward while the other moves away from the pole, allowing chromosomes to congress to the spindle equator. In our kinetochore-tensiometer model, we hypothesized that this coordinated behavior is regulated by tension across the centromere produced by kinetochore movement relative to the sister kinetochore and bulk of the chromosome arms. To test this model, we severed or severely weakened the centromeric chromatin between sister kinetochores on bi-oriented newt lung cell chromosomes with a laser microbeam. This procedure converted a pair of tightly linked sister kinetochores into two mono-oriented single kinetochore-chromatin fragments that were tethered to their chromosome arms by thin compliant chromatin strands. These single kinetochore-chromatin fragments moved substantial distances off the metaphase plate, stretching their chromatin strands, before the durations of poleward and away from the pole movement again became similar. In contrast, the severed arms remained at or moved closer to the spindle equator. The poleward and away from the pole velocities of single kinetochore-chromatin fragments in prometaphase were typical of velocities exhibited by sister kinetochores on intact chromosomes from prometaphase through midanaphase A. However, severing the chromatin between sister kinetochores uncoupled the normally coordinated motility of sister kinetochores. Laser ablation also uncoupled the motilities of the single kinetochore fragments from the bulk of the arms. These results reveal that kinetochore directional instability is a fundamental property of the kinetochore and that the motilities of sister kinetochores are coordinated during congression by a stiff centromere linkage. We conclude that kinetochores act as tensiometers that sense centromere tension generated by differential movement of sister kinetochores and their chromosome arms to control switching between constant velocity P and AP motility states.
منابع مشابه
Oscillating mitotic newt lung cell kinetochores are, on average, under tension and rarely push.
Experimentally introduced tension on kinetochores and their centromeres has been shown to stabilize kinetochore attachment to microtubules, modify kinetochore directional instability, and regulate cell-cycle progression into anaphase. In mitosis, kinetochore tension and the stretch of centromere chromatin are produced by the movement of sister kinetochores toward opposite poles and astral eject...
متن کاملMCAK facilitates chromosome movement by promoting kinetochore microtubule turnover
Mitotic centromere-associated kinesin (MCAK)/Kif2C is the most potent microtubule (MT)-destabilizing enzyme identified thus far. However, MCAK's function at the centromere has remained mechanistically elusive because of interference from cytoplasmic MCAK's global regulation of MT dynamics. In this study, we present MCAK chimeras and mutants designed to target centromere-associated MCAK for mech...
متن کاملPac-man motility of kinetochores unleashed by laser microsurgery
We report on experiments directly in living cells that reveal the regulation of kinetochore function by tension. X and Y sex chromosomes in crane fly (Nephrotoma suturalis) spermatocytes exhibit an atypical segregation mechanism in which each univalent maintains K-fibers to both poles. During anaphase, each maintains a leading fiber (which shortens) to one pole and a trailing fiber (which elong...
متن کاملLaser microsurgery reveals conserved viscoelastic behavior of the kinetochore
Accurate chromosome segregation depends on proper kinetochore-microtubule attachment. Upon microtubule interaction, kinetochores are subjected to forces generated by the microtubules. In this work, we used laser ablation to sever microtubules attached to a merotelic kinetochore, which is laterally stretched by opposing pulling forces exerted by microtubules, and inferred the mechanical response...
متن کاملChromosome Fragments Possessing Only One Kinetochore Can Congress to the Spindle Equator
We used laser microsurgery to cut between the two sister kinetochores on bioriented prometaphase chromosomes to produce two chromosome fragments containing one kinetochore (CF1K). Each of these CF1Ks then always moved toward the spindle pole to which their kinetochores were attached before initiating the poleward and away-from-the-pole oscillatory motions characteristic of monooriented chromoso...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 108 ( Pt 7) شماره
صفحات -
تاریخ انتشار 1995